Total No. of Questions: 08

> B.Tech (All) (Sem.-2)
> MATHEMATICS-II
> Subject Code : BTAM204-18
> M.Code : 76257
> Date of Examination : 15-07-21

Time : 2 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. Attempt any FIVE question(s), each question carries $\mathbf{1 2}$ marks.
2. a) Calculate the coefficient of skewness from the following data :

Life time (in hours)	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
No. of tubes	2	5	7	13	21	16	8	3

b) The first four moments for a distribution about the value 4 of the variable are $-1.5,17$, -30 and 108. Find the moments about the mean.
2. a) From a bag containing 20 tickets, numbered from 1 to 20 , two tickets are drawn at random. Find the probability that
i) Both the tickets have prime numbers on them.
ii) On one there is a prime number and on the other there is multiple of 4 .
b) A random variable X has the following probability distribution

\mathbf{X}	0	1	2	3	4	5	6	7
$\mathbf{P}(\mathbf{X})$	0	K	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine (i) $k \quad$ (ii) $\mathrm{P}(\mathrm{X}<3)$.
3. a) Fit a binomial distribution for the following data :

\boldsymbol{x}	0	1	2	3	4	5
\boldsymbol{f}	2	14	20	34	22	8

b) If 5% of the electric bulbs manufactured by a company are defective.

Use a Poisson distribution to find the probability that in a sample of 100 bulbs.
i) None is defective
ii) 5 bulbs will be defective
4. a) Calculate rank correlation coefficient for the following distribution

\mathbf{X}	11	6	9	13	6	27	15	16	17	10	1
\mathbf{Y}	21	30	37	40	29	34	39	24	20	40	38

b) Find the two regression equations from the following data :

\mathbf{X}	1	2	3	4	5
\mathbf{Y}	2	3	4	5	6

5. a) A continuous random variable X has the following distribution function.

$$
f(x)=\left(\begin{array}{cc}
0, & \text { if } x \leq 1 \\
k(x+1)^{4}, & \text { if } 1<x \leq 3 \\
1, & \text { if } x>3
\end{array}\right.
$$

b) Find the value of k and also the probability density function (p.d.f) $f(x)$.
6. Explain the method of least squares to fit a curve. Use this method of find the curve $y=a x+b x^{2}$ that best fits the following data :

\boldsymbol{x}	1	2	3	4	5
\boldsymbol{y}	1.8	5.1	8.9	14.1	19.8

7. a) A sample of 1000 students from a university was taken and their average weight was found to be 112 pounds with S.D. of 20 pounds. Could the mean weight of students in the population be 120 pounds?
b) The average income of persons was Rs. 210 with S.D. of Rs. 10 in a sample of 100 people of a city. For another sample of 150 persons, the average income was Rs. 220 with S.D. of Rs.12. Test whether there is any significant difference between the average incomes of the localities.
8. a) The sales in a supermarket during a week are given below. Test the hypothesis that the sales do not depend on the day of the week, using a significant level of 0.05 .

Days	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
Sales (in Rs.)	65	54	60	56	71	84

b) Discuss the various properties of χ^{2}-test.

Note: Any student found attempting answer sheet from any other person(s), using incriminating material or involved in any wrong activity reported by evaluator shall be treated under UMC provisions.

Student found sharing the question paper(s)/answer sheet on digital media or with any other person or any organization/institution shall also be treated under UMC.

Any student found making any change/addition/modification in contents of scanned copy of answer sheet and original answer sheet, shall be covered under UMC provisions.

END TERM EXAMINATION
B. Tech CSE|EE|ECE/ME

Mathematics - II
Subject Code: BTAM 204-18
M. Code: 76257

Date of Examination: 15-7-21
Q) Calculate the Coefficient of spewoss from the following data:

(b) The first four moments for a distribution about the value 4 of the variables are $-1.5,17,-30,108$. find the moments about mean.
Solution
(a) We lan find the coefficient of skewness by using Karl pearson's method

$$
S_{R}=\frac{3(\dot{x}-\mu)}{S}
$$

Where $\bar{x}=$ mean of the distribution
$\mu=$ median of the distribution
$s=$ standard deviation

Life Time	No of	Midas	x_{i}
x_{i}	$f x_{i}$		
$0-5$	2	2.5	5
$5-10$	5	7.5	35
$10-15$	7	12.5	87.5
$15-20$	13	17.5	227.5
$20-25$	21	22.5	472.5
$25-30$	16	27.5	440
$30-35$	8	32.5	260
$35-40$	3	37.5	112.5
	$\sum f=82$		$\sum f_{i}=1670$

Calculating the Mean (\bar{X})

$$
\bar{x}=\frac{\sum f_{i}}{\sum f_{i}}=\frac{1670}{82}=20.37
$$

Now Standard deviation Can be Calculated as!

$$
S=\sqrt{\frac{\sum f\left(x_{i}-\bar{x}\right)^{2}}{\sum f}}=8.05
$$

To Calculate the Median (M)
nu find Median class (where the of just Enceeds half of the total frequency)
So Here Median class is the $4^{\text {th }}$ Class (15-20 hrs) with a Cumnarlative frequency of 27
so

$$
M=L+\frac{\frac{n}{2}-f}{f} \times \omega
$$

$L \rightarrow$ Lover class boundary of median class
$F \rightarrow$ is the commutative frequency of Class before the median class $f \rightarrow$ frequently of the median class $\omega \rightarrow$ width of the median class

$$
\begin{aligned}
\mu= & 15+\frac{82}{2}-14 \\
13 & \times 5 \\
& =15+\frac{41-14}{13} \times 5 \\
& =15+2.08 \\
& \approx 17.08
\end{aligned}
$$

so $\quad s_{k}=\frac{3(\bar{x}-\mu)}{s}=3\left(\frac{20.87-17.08)}{8.05}=0.09\right.$

So Coif is the Hence it indicates that the distribution is thely skewed.
(b) The moment about origin are given

$$
\begin{aligned}
& \mu_{1}^{\prime}=-1.5 \\
& \mu_{2}^{\prime}=17 \\
& \mu_{3}^{\prime}=-30 \\
& \mu_{1}^{\prime}=108
\end{aligned}
$$

Moment about mean $=\mu_{1}=\mu_{1}^{\prime}-\mu_{1}^{\prime}=0$

$$
\begin{aligned}
&(\text { Sample } \\
&\text { valence }) \mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=(17)-2.25=14.25 \\
& \mu_{3}=\mu_{3}^{\prime}-3 \mu_{2}^{\prime}\left(\mu_{1}^{\prime}\right)+2\left(\mu_{1}^{\prime}\right)^{3}
\end{aligned}
$$

there $\mu_{1}, \mu_{2}, \mu_{3}$ are $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {nd }}$ moment about mean

$$
\begin{aligned}
\mu_{3} & =(-30)-3(17)(-1.5)+2(-1.5)^{3} \\
& =-30+76.5-6.75 \\
& =76.5-36.75 \\
\mu_{3} & =39.25
\end{aligned}
$$

Q 2
(a) from a bag Containing 20 tickets, numbered from 1 to 20, two tickets are drawn at random. Find the probability that
(i) Both the tickets have prime numbers on then
(ii) on one there is a prime number and on the other there is multiple of 4 .
Solve (a).
(i) Both Tickets have prime numbers:

The prime numbers between 1 and so are $2,3,5,7,11,13,17$ and $19 .\left(8\right.$ prime no's $\left.^{\prime}\right)$
we know $C_{n_{k}}=\frac{n!}{\mu!(n-r)!}$
So to choose 2 prime numbered Hikes out of 8 :

$$
{ }^{8} C_{2}\left(=\frac{8!}{2!(8-2)!}=\frac{8!}{2!6!}=\frac{8.7}{2 \cdot 1}=28\right.
$$

To choose 2 tickets out of 20 :

$$
{ }^{20} c_{2}=\frac{20!}{2!(20-2)!}=\frac{20!}{2!18!}=\frac{20.19}{2.1}=190
$$

so $P($ Both prime $)=\frac{28}{190}$
(ii) one prime number and one multiple of 4 :
no. of prime numbers $b / \omega /$ and $20=8$
no. of multiples of $4 \mathrm{~b} / \mathrm{w}$ land $20=(4,8,12,16) 4$ no. of ways to choose 1 prime numbered ticket and 1 multiple of 4 :

$$
{ }^{8} c_{1} \times{ }^{4} c_{1}=8 \times 4=32
$$

So, Total number of mays to choose 2 tickets out of 20

$$
{ }^{20} c_{2}=190
$$

So $P\left(\begin{array}{c}\text { one prime and } \\ \text { one multiple } \\ \text { of } 4\end{array}\right)=\frac{32}{190}$
(b) A random variable X has the following probability distribution:

x	0	1	2	3	4	5	6	7
(x)	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
(i) K
(ii) $P(x<3)$.

Soln.: (i) we know that sum of all probabilities in a probability distridention should be equal 101 so

$$
\begin{aligned}
& \sum P(x)=1 \\
& 0+k+2 k+2 k+3 k+k^{2}+2 k^{2}+7 k^{2}+k=1 \\
& 12 k^{2}+9 k=1 \\
& 12 k^{2}+9 k-1=0 \\
& k=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& k=\frac{-9 \pm \sqrt{9^{2}-4(12)(-1)}}{2(12)} \\
& k=\frac{-9 \pm \sqrt{117}}{24}=\frac{-9 \pm 10.8}{24} \\
& \text { So Cither } k=\frac{-9+10.8}{24} \quad \text { or } \quad \frac{-9-10.8}{24} \\
& k=\frac{0.075 \quad \text { or }=0.825}{25}
\end{aligned}
$$

since, $0<k<1$ so $k=0.075$
(ii)

$$
\begin{aligned}
& \frac{P(x<3)}{P(x<3)}=P(x=0)+P(x=1)+P(x=2) \\
& P(x<3)=0+k+2 k+2 k \\
& \\
& =5 k=5(0.075) \\
& P(x<3)=0.375
\end{aligned}
$$

QB
(a) fit a binomial distribution for the following data:

x	0	1	2	3	4	5
f	2	14	20	34	22	8

log
To fit a binanial distribution to given data we determine the parameters of binomial distribution
$n \rightarrow$ no of Trials
$p \rightarrow$ probability of Success on a Single Trial
The Probability mass function (PMF) of a binomial distribution is given by:

$$
P(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Where ' k ' is the number of successes.
x represents number of successes (0t05) represents frequency corresponding to ' x '
Total no of trials $=N=E f$

$$
N=2+14+20+34+22+8=100
$$

nu can fit the binomial distribution by estimating ' p ' and ' n ' based on aboue data. The Expected value (μ) of a binomial distribution is ' $m p$ '.

Variance $\left(\sigma^{2}\right)$ is $n p(1-p)$

$$
\begin{aligned}
\mu & =n p \\
\sigma^{2} & =n p(1-p) \\
\hat{p} & =\frac{\sum x f}{N}=\frac{230}{100}=2.3 \\
\hat{n} & =\frac{N}{\hat{p}}=\frac{100}{2.3}=43.48
\end{aligned}
$$

So Binomial distribution mould be $B(43,0.23)$

3
If 5% of Electric bulbs manufactured by a Company are defective. use poisson dist to find the probability that in sample of 100 bulbs.
(i) None is alefectine
(ii) 5 bulbs will be defective.

Sole For Poisson distribution, the probability mass function is given by:

$$
P(x=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

Where X is the number of events, ' k ' is the number of occurences and λ is the average rate of occurrence
Average rate of defective $=$ Product of \times Total number bulbs (λ) probability of bulbs in the Sample (n)

$$
\lambda=n p
$$

Here $p=0.05, n=100$

$$
\lambda=100 \times 0.05=5
$$

(i) None is defective. $(k=0)$

$$
P(x=0)=\frac{e^{-5} \times 5^{0}}{0!}=e^{-5}
$$

(ii) $5 \frac{\text { bulbs will be defective }}{(k=5)}$

$$
P(x=5)=\frac{e^{-5} \times 5^{5}}{5!}
$$

Qr (a) find rank corelation coefficient for the following distribution

x	11	6	9	13	6	27	15	16	17	10	1
y	21	30	37	40	29	34	39	24	20	40	38

Sole
First ne rank the data for x and Y

$$
\begin{aligned}
& x: 7,2,4,9,2,11,6,8,10,5,1 \\
& y: 6,8,10,11,7,9,10,5,3,11,10
\end{aligned}
$$

Now, difference in rank pair (d)

$$
\begin{array}{ll}
& d:-2,0,-1,-2,5,2,0,3,1,-6,-9 \\
d^{2}: & 4,0,1,4,25,4,0,9,1,36,81
\end{array}
$$

Sum $d^{2}\left(\Sigma d^{2}\right)=165$

$$
n=11 \quad \text { (no of data points) }
$$

hank Corelation coefficient:

$$
\begin{aligned}
& r s=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \\
& r s=1-\frac{6 \times 165}{11\left(11^{2}-1\right)}=1-\frac{990}{1100}=1-0.9=0.1
\end{aligned}
$$

So rank Corelation coefficient is 0.1
(b) Find Two regression equations from the following data:

x	1	2	3	4	5
y	2	3	4	5	6

Sole: To find the regression equations we will Calculate the slope (b) and the Intercept (a) for both the regression lines (Y an $X \& X$ on Y) using Least square method.
Regression Equation of Y on x :
(1) Calculate the means

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{1+2+3+4+5}{5}=3 \\
& \bar{y}=\frac{\Sigma 4}{n}=\frac{2+3+4+5+6}{5}=4
\end{aligned}
$$

The value of slope (b) is given by

$$
\begin{gathered}
b=\frac{\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}{=\frac{(1-3)(2-4)+(2-3)(3-4)+(3-3)(4-4)+(4-3)(5-4)+(5-3)(6-4)}{(1-3)^{2}+(2-3)^{2}+(3-3)^{2}+(4-3)^{2}+(5-3)^{2}}} \\
b=\frac{-2-1+0+1+4}{4+1+0+1+4}=\frac{2}{5}
\end{gathered}
$$

and Inlevcept ' a ': $a=\bar{y}-b \bar{x}=4-\frac{2}{5} \times 3$

$$
=\frac{12}{5}
$$

So the regression equation for y on x is $y=\frac{2}{3} x+\frac{12}{5}$
Regression Equation of x on y :
calculating the the slope ' b '.

$$
\begin{gathered}
b=\sum_{i=1}^{n} \frac{\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
b=\frac{(2-4)(1-3)+(3-4)(2-3)+(y-4)(3-3)+(5-4)(4-3)+(6-4)(5-3)}{(2-4)^{2}+(3-4)^{2}+(4-4)^{2}+(5-4)^{2}+(6-4)^{2}} \\
b=\frac{2+1+0+1+4}{4+1+0+1+4}=\frac{8}{10}=\frac{4}{5}
\end{gathered}
$$

model or liusue.

And Intercept ' a '

$$
a=\bar{x}-b \bar{y}=3-\frac{4}{5} \times 4=8 / 5
$$

So the regression Equation for x on Y as $x=\frac{4}{5} y+\frac{8}{5}$
Q5 (a) A Continuous random variable x has the following distribution function

$$
f(x)=\left\{\begin{array}{cl}
0, & \text { if } x \leq 1 \\
k(x+1)^{4}, & \text { if } 1<x \leq 3 \\
, & \text { if } x>3
\end{array}\right.
$$

(b) Find the value of ' k ' and also find the probability density function $(p, d \cdot f)(f(x)$.
Sole:
We know that total area under the probability density function must be equal to 1. Therefor nee have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=1 \\
& \Rightarrow \int_{-\infty}^{1} 0 d x+\int_{1}^{3} k(x+1)^{4} d x+\int_{3}^{\infty} 1 \cdot d x=1 \\
& \Rightarrow 0+\int_{1}^{3} k(x+1)^{4} d x+0=1 \\
& \Rightarrow \int_{1}^{3} k(x+1)^{4} d x=1 \\
& \Rightarrow k\left[\left.\frac{(x+1)^{5}}{5}\right|_{1} ^{3}\right. \\
& \Rightarrow k\left[\frac{(3+1)^{5}}{5}-\left(\frac{(2)^{5}}{5}\right)\right]=1 \\
& \Rightarrow k\left[\frac{1024}{5}-\frac{32}{5}\right]=1 \\
& \Rightarrow k\left[\frac{992}{5}\right]=1 \\
& \Rightarrow k=\left[\frac{5}{992}\right]=0.005
\end{aligned}
$$

To find the P.d.f. $f(x)$:
Now me differentiate $C D F$ to get p.d.f.

$$
f(x)=\frac{d}{d x} F(x)
$$

Where $f(x)$ is Cummulative distribution fo ($C D F$)

$$
\begin{aligned}
f(x) & =\int_{-\infty}^{x} f(t) d t \\
f(x) & =\frac{d}{d x}\left[\int_{-\infty}^{x} f(t) d t\right] \\
f(x) & =\frac{d}{d x}\left[5 k \int_{-\infty}^{x}(t+1)^{4} d t\right) \\
& =5 k \frac{d}{d t} \int_{-\infty}^{x}\left[(t+1)^{4} d t\right]_{-\infty}^{x} \\
& \left.=5 k \frac{d}{d t} \frac{(t+1)^{5}}{5}\right]_{-\infty} \\
& =5 k d t\left[\frac{x+1)^{5}}{5}\right]_{d t} \\
& =k .5(x+1)^{4} \\
& =0.005 \times 5(x+1)^{4} \\
& =0.025(x+1)^{4} .
\end{aligned}
$$

O6 Explain the method of least squares to fit a Curve. use this method to find the curve $y=a x+b x^{2}$ that best fits the following data:

x	1	2	3	4	5
y	1.8	5.1	8.9	14.1	19.8

Sols:
The method of leastsquares is a statistical approach used to find the best -fitting Curve to a set of data point. We aim 10 minimize the sum of the squared differences between the observed Values and the values predicted by the model or Curve.
for the given data points $\left(x_{i}, y_{i}\right)$ where $i=1,2,3, \ldots n$ and a model function $y=f(x, a, b)$, the sum of squared differences is:

$$
S(a, b)=\sum_{i=1}^{n}\left[y_{i}-f\left(x_{i}, a, b\right)\right]^{2}
$$

wu find values of ' a ' and ' b ' which minimize $S(a, b)$.
Here $y=a x+b x^{2}$
so

$$
\begin{array}{ll}
\frac{\partial S}{\partial a}=0 & \Rightarrow-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\left(a x_{i}+b x_{i}^{2}\right)\right) \\
\frac{\partial S}{\partial b}=0 & \Rightarrow-2 \sum_{i=1}^{n} x_{i}^{2}\left(y_{i}-\left(a x_{i}+b x_{i}^{2}\right)\right)
\end{array}
$$

On solving ne ger

$$
a=1.07 \text { and } b=0.85
$$

So the best fitting Cumin, $y=1.07 x+0.85 x^{2}$
Q7 A sample of 1000 shedents from a university was taken and their average weight was found to be 112 pounds with SD of 20 pounds. Could the mean

Sols weight of Indents in the population be 120 pounds?
nl use thypothesis Testing
The null tlypothess $\left(H_{0}\right)$: There is no Significant difference in meankueight (pond)
Alternative hypothesis $\left(\mathrm{H}_{1}\right)$: There is a significant difference, population weight is 120 pounds.
Here Sample mean $\bar{x}=112$ pounds
(s) $S \cdot D=20$ pounds
(n) Sample size $=1000$

We use Z-Test

$$
\begin{aligned}
& z=\frac{\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}}{} \\
& z=\frac{112-120}{\frac{20}{\sqrt{1000}}}=\frac{-8}{\frac{20}{\sqrt{1000}}}=-2.83 .
\end{aligned}
$$

For Two tailed rust at 0.05 significance level the critical value of z are -1.96 and 1.96 So since the Calculated score is less than Tabular value (-1.96), we Reject the Null hypothesis Hence, at 0.05 level of Significance the mean weight of students in the population is not 120 pounds.
(b) The average income of pensonswas RS 210 with S.D. of Rs 10 . in a sample. of 100 people of a city. Foo another Sample of 150 person, the average income mas R 220 with SD of RS 12 . Test whether there is any significant difference b/w the average incomes of localities
Sown We use thpothesis using
Let $H_{0}: \mu_{1}-\mu_{2}=0$ (There is no significant difference
in average incomes bl the in average incomes b/w two localities)
$H_{1}: \mu_{1}-\mu_{2} \neq 0$ (There is a significant difference is average income b/a neo
Sample):

$$
\begin{aligned}
\text { SUDan }=\bar{x}_{1} & =\text { Rs } 210 \\
S_{1} & =R_{s} 10 \\
M_{1} & =100
\end{aligned}
$$

Sample 2:

$$
\begin{aligned}
& \bar{x}_{2}=R_{s} 220 \\
& s_{2}=A_{1 / 2} \\
& n_{2}=150
\end{aligned}
$$

we use T spastic to dolce

$$
\begin{aligned}
& t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}\right)+\left(\frac{s_{2}^{2}}{n_{2}}\right)}} \\
& t=\frac{210-220}{\sqrt{\frac{(10)^{2}}{100}+\frac{(12)^{2}}{150}}} \\
& t=\frac{-10}{\sqrt{1+0.96}} \\
& t=\frac{-10}{\sqrt{1.96}}=-7.14
\end{aligned}
$$

At 0.05 lee of dignificalace for two toiled test The degrees of freon are

$$
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}\right)}{n_{1}-1} \cdot\left(\frac{\left.\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}\right.} \frac{n_{1}-1}{n_{1}}=109.23
$$

So, The of at 0.05 level of Significance Comes out be approximately 109.23 and calculated value of t is -7.14 .
Since the Calculated value is greater than the tabular value (± 1.984) so ne reject the null Hypothesis at 5% level of Significance. Which suggests there is a significance difference between auriga incomes of two localities.

Q8(a) The sales in cupemerpet during a meek an given below- Test the hypothesis that the sales do not depend on the day of the nuek using a significant level of 0.05 .

Days	Mon	Tue	wed	Thu	Fri	San
Sales	65	54	60	56	71	84
(Rs)	690					

(B) Discuss various properties of X^{2}-test

Sols Let's set up hypothesis
H_{0} : The sales do not depend on the day of the week
H_{1} : The sales depend on the day of the meek.
The Expected values $\left(E_{i}\right)$ are given by

$$
\begin{array}{ll}
E_{i j}=(\text { To al } \times(\text { Total Colouninj }) \\
\text { Gand total } & E_{13}=\frac{390 \times 60}{390}=60 \\
E_{11}=\frac{65 \times 390}{390}=65 & E_{14}=\frac{390556}{390}=56 \\
E_{12}=\frac{54 \times 390}{390}=65 &
\end{array}
$$

So Calculating to on the Expected frequency of each day is 65 .

$$
\begin{aligned}
& \quad \frac{(71-65)^{2}}{65}+\frac{(84-65)^{2}}{65}=\frac{121}{65}+\frac{25}{65}+\frac{81}{65}+\frac{36}{65}+ \\
& \text { Degues of }=(R-1) \times(C-1)=(6-1)(1-1)=5=9
\end{aligned}
$$

So

CalculidN Value of X^{2} stastsssic at 5\% level of Significance is 9.6 at 5 d.o.f.

Tabular value is 11.07
Since Calculate value $x_{B}^{2}(9,6)<$ Tabular x^{2} (11.07)
(b) So we accept Neil Hypoth
(1) Test for Independence: chi square test is commonly used to kat the independence of truro Gtegorical variables It checks the observed frequencies and expected values
(2) Categorical variables. The chi square test is applicable when dealing with Gitgolical variables and not suitable for continuous variables.
(3) It Jest significant association between Twolategoical values.
(1) This Test assumes that the observed frequencies are independent
(5) The degrees of freedom ($d f$) for Chisquare test depend upon number of Categories being analysed $d f=(r-1) \times(c-1), r$ - no of rows, colouring colours.
(6) Chi square staststric: $\left(X_{1}^{2}\right)$ is calculated using

$$
x^{2}=\sum \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}}
$$

Where $\mathrm{O}_{i} \rightarrow$ observed frequency
$E_{i} \rightarrow$ Expected frequency
(7) If Calculated ' X^{2} is greater than critical value then Null hypotess's is Rejected. Indicating a significant association between the variables

